
 1

An Introduction to Basic Data Structures in Postgres 16

Leo Custodio
BDS Research Inc.

contact@lcustodio.com

Abstract

This article provides a technical overview of two

fundamental data structures in PostgreSQL: the heap

(base table storage) and the B-Tree index. It explains how

the heap stores row data on disk and how it interacts with

PostgreSQL’s Multi-Version Concurrency Control (MVCC)

mechanism. Additionally, the article delves into the

structure, usage, and performance benefits of B-Tree

indexes, illustrating how they enable efficient data retrieval.

By understanding these data structures, readers can

optimize queries, choose appropriate indexing strategies,

and maintain better database performance.

Keywords

PostgreSQL Heap Storage, B-Tree Indexing, Database

Performance

Introduction

PostgreSQL is a powerful, open-source relational

database system known for its robust feature set,

extensibility, and standards compliance. Under the hood,

PostgreSQL relies on well-established data structures to

store data and make query execution performant. Two

particularly important structures are:

• The Heap (Table Storage): This is the base structure

where all table data is stored.

• B-Tree Indexes: These are the most commonly used

indexes in PostgreSQL, enabling efficient data retrieval

operations.

Understanding these data structures is crucial for DBAs,

developers, and anyone who seeks to optimize

performance, understand query execution plans, or

troubleshoot database operations.

1. Heap Storage in PostgreSQL

What is the Heap?

PostgreSQL stores table data in what is commonly referred

to as a “heap.” Contrary to the name, it’s not a heap in

the strict algorithmic sense (like a binary heap used in

priority queues), but rather an unordered collection of

rows. The heap consists of multiple files on disk, each

divided into fixed-size pages (commonly 8KB by default).

Each page can store multiple rows or “tuples,” along with

some metadata such as transaction identifiers for

concurrency control and tuple visibility information.

How are Rows Organized?

In a heap, rows are inserted wherever there is available

space. PostgreSQL does not reorder rows on disk after

insertion. As a result, data retrieval without an index scan

will read pages sequentially in the order they appear on

disk, irrespective of logical ordering such as primary keys.

Over time, deletions and updates (which in PostgreSQL are

effectively insertions of new versions of a row and marking

old versions as expired) can create fragmentation, leading

to less efficient sequential reads.

Tuple Visibility and MVCC:

PostgreSQL employs Multi-Version Concurrency Control

(MVCC) to manage concurrent transactions. Each tuple in

the heap contains information that helps the database

engine decide if that tuple is visible to a particular

transaction. With MVCC, readers do not block writers and

vice versa. This design ensures smooth concurrent

operations but also means that over time, some tuples

become “dead” (no longer visible to any transaction) and

must be reclaimed via Vacuum processes.

Example - Selecting Data from a Heap:

Suppose we have a simple table:

CREATE TABLE employees (
 id SERIAL PRIMARY KEY,
 name TEXT,
 role TEXT
);

When we insert data:

INSERT INTO employees (name, role) VALUES
('Alice', 'Engineer'), ('Bob', 'Manager');

These rows end up appended to the heap. A SELECT *

FROM employees; without any index usage will trigger a

sequential scan of the heap, reading every page of the

underlying file until all tuples are retrieved.

 2

2. B-Tree Indexes in PostgreSQL

What is a B-Tree Index?

A B-Tree index is a balanced tree data structure used to

quickly locate rows in large data sets. By maintaining a

tree of keys, B-Tree indexes reduce the need to scan entire

heaps, thus improving query performance dramatically.

When you create a primary key or a unique constraint in

PostgreSQL, a B-Tree index is typically built under the

hood.

Structure of a B-Tree:

The B-Tree is a multi-level structure composed of a root

node, internal nodes, and leaf nodes. The leaf nodes

contain pointers to the actual heap tuples (or their

identifiers, known as TIDs—Tuple Identifiers). The internal

nodes serve as a navigation layer, allowing PostgreSQL to

quickly descend through the tree to find the correct leaf.

B-Trees are kept balanced, meaning the tree’s height

remains relatively small even as data grows large, ensuring

O(log n) search time complexity.

How PostgreSQL Uses B-Trees:

When you execute a query with a condition that can use an

index (for example, SELECT * FROM employees WHERE id

= 10;), PostgreSQL’s optimizer checks if a B-Tree index

on id exists. If it does, the engine performs an index scan

rather than a sequential scan. This process involves:

Starting from the root of the B-Tree.

Traversing down internal nodes following the comparisons

until the correct leaf is found.

Fetching the TID from the leaf node and then retrieving the

row directly from the heap.

Example - Creating and Using a B-Tree Index:

-- Creating an index on the 'role' column
CREATE INDEX idx_employees_role ON employees
(role);
-- Now a query filtering by role can use the index
EXPLAIN ANALYZE SELECT * FROM employees WHERE
role = 'Engineer';

In the EXPLAIN ANALYZE output, you’ll see something like

an “Index Scan” instead of “Seq Scan,” indicating that

PostgreSQL used the B-Tree index to efficiently locate

rows with role = 'Engineer'.

Conclusion

The heap and B-Tree indexes are two essential building

blocks of PostgreSQL’s storage and retrieval strategy. The

heap provides a flexible, append-friendly structure for

storing row data, while B-Tree indexes deliver fast access

to subsets of that data. By understanding how these data

structures work, you can make informed decisions about

when to use indexes, how to structure queries, and how to

maintain efficient database performance over time.

References

Geschwinde, E., & Schönig, H. J. (2002). PostgreSQL
Developer's Handbook. Sams Publishing.

Momjian, B. (2000). PostgreSQL: Introduction and Concepts.
Addison-Wesley.

PostgreSQL Global Development Group. (2023). PostgreSQL
16 Documentation. https://www.postgresql.org/docs/16/

Riggs, S., Ciolli, G., Krosing, H., & Bartolini, G. (2015).

PostgreSQL 9 Administration Cookbook. Packt Publishing Ltd.

